Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20443, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462711

RESUMO

Sweet-fleshed watermelon (Citrullus lanatus) is an important vegetable crop of the tropical origin. It is widely grown and consumed around the world for its hydration and nutritional quality values. Low-temperature stress can affect early planting, seedling establishment, and expansion of crop production to new areas. A collection of 122 citron watermelon (Citrullus amarus) accessions were obtained from the USDA's National Plant Germplasm Repository System gene bank in Griffin, GA. The accessions were genotyped using whole genome resequencing to generate single nucleotide polymorphisms (SNPs) molecular markers and screened under cold-stressed and non-stressed control conditions. Four low-temperature stress tolerance related traits including shoot biomass, vine length, maximum quantum efficiency of photosystem II, and chlorophyll content were measured under cold-stressed and non-stressed control treatment conditions. Correlation analysis revealed the presence of positive relationships among traits. Broad-sense heritability for all traits ranged from 0.35 to 0.73, implying the presence of genetic contributions to the observed phenotypic variation. Genomic regions underlying these traits across several citron watermelon chromosomes were identified. Four low-temperature stress tolerance related putative candidate genes co-located with the peak SNPs from genome-wide association study. These genomic regions and marker information could potentially be used in molecular breeding to accelerate genetic improvements for low-temperature stress tolerance in watermelon.

2.
Theor Appl Genet ; 137(4): 91, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555543

RESUMO

KEY MESSAGE: Fon race 2 resistant QTLs were identified on chromosomes 8 and 9. Families homozygous for resistance alleles at a haplotype of three KASP markers had 42% lower disease severity than those with susceptible alleles in an independent, interspecific validation population confirming their utility for introgression of Fusarium wilt resistance. Fusarium oxysporum f. sp. niveum (Fon) race 2 causes Fusarium wilt in watermelon and threatens watermelon production worldwide. Chemical management options are not effective, and no resistant edible watermelon cultivars have been released. Implementation of marker-assisted selection to develop resistant cultivars requires identifying sources of resistance and the underlying quantitative trait loci (QTL), developing molecular markers associated with the QTL, and validating marker-phenotype associations with an independent population. An intraspecific Citrullus amarus recombinant inbred line population from a cross of resistant USVL246-FR2 and susceptible USVL114 was used for mapping Fon race 2 resistance QTL. KASP markers were developed (N = 51) for the major QTL on chromosome 9 and minor QTL on chromosomes 1, 6, and 8. An interspecific F2:3 population was developed from resistance donor USVL246-FR2 (C. amarus) and a susceptible cultivar 'Sugar Baby' (Citrullus lanatus) to validate the utility of the markers for introgression of resistance from the wild crop relative into cultivated watermelon. Only 16 KASP markers segregated in the interspecific C. amarus/lanatus validation population. Four markers showed significant differences in the separation of genotypes based on family-mean disease severity, but together explained only 16% of the phenotypic variance. Genotypes that inherited homozygous resistant parental alleles at three KASP markers had 42% lower family-mean disease severity than homozygous susceptible genotypes. Thus, haplotype analysis was more effective at predicting the mean disease severity of families than single markers. The haplotype identified in this study will be valuable for developing Fon race 2 resistant watermelon cultivars.


Assuntos
Citrullus , Fusarium , Humanos , Lactente , Locos de Características Quantitativas , Genótipo , Homozigoto , Citrullus/genética
3.
New Phytol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503725

RESUMO

Bottle gourd (Lagenaria siceraria (Mol.) Strandl.) is an economically important vegetable crop and one of the earliest domesticated crops. However, the population history and genomic diversification of bottle gourd have not been extensively studied. We generated a comprehensive bottle gourd genome variation map from genome sequences of 197 world-wide representative accessions, which enables a genome-wide association study for identifying genomic loci associated with resistance to zucchini yellow mosaic virus, and constructed a bottle gourd pangenome that harbors 1534 protein-coding genes absent in the reference genome. Demographic analyses uncover that domesticated bottle gourd originated in Southern Africa c. 12 000 yr ago, and subsequently radiated to the New World via the Atlantic drift and to Eurasia through the efforts of early farmers in the initial Holocene. The identified highly differentiated genomic regions among different bottle gourd populations harbor many genes contributing to their local adaptations such as those related to disease resistance and stress tolerance. Presence/absence variation analysis of genes in the pangenome reveals numerous genes including those involved in abiotic/biotic stress responses that have been under selection during the world-wide expansion of bottle gourds. The bottle gourd variation map and pangenome provide valuable resources for future functional studies and genomics-assisted breeding.

4.
Front Plant Sci ; 14: 1236576, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881618

RESUMO

Flowering time and fruit yield are important traits in watermelon crop improvement. There is limited information on the inheritance and genomic loci underlying flowering time and yield performance, especially in citron watermelon. A total of 125 citron watermelon accessions were evaluated in field trials over two growing seasons for days to male and female flowers, fruit count, fruit weight, and fruit yield. The germplasm was genotyped with more than two million single-nucleotide polymorphism (SNP) markers generated via whole-genome resequencing. Trait mapping was conducted using a genome-wide association study (GWAS). Broad-sense heritability for all traits ranged from moderate to high, indicating that genetic improvement through breeding and selection is feasible. Significant marker-trait associations were uncovered for days to female flower (chromosomes Ca04, Ca05, Ca08, and Ca09), fruit count (on Ca02, Ca03, and Ca05), fruit weight (on Ca02, Ca06, Ca08, Ca10, and Ca11), and fruit yield on chromosomes Ca05, Ca07, and Ca09. The phenotypic variation explained by the significant SNPs ranged from 1.6 to 25.4, highlighting the complex genetic architecture of the evaluated traits. Candidate genes relevant to flowering time and fruit yield component traits were uncovered on chromosomes Ca02, Ca04, Ca05, Ca06, Ca09, and Ca11. These results lay a foundation for marker-assisted trait introgression of flowering time and fruit yield component traits in watermelons.

5.
Plant Genome ; 16(4): e20391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37718629

RESUMO

Fruit quality traits are crucial determinants of consumers' willingness to purchase watermelon produce, making them major goals for breeding programs. There is limited information on the genetic underpinnings of fruit quality traits in watermelon. A total of 125 citron watermelon (Citrullus amarus) accessions were genotyped using single nucleotide polymorphisms (SNPs) molecular markers generated via whole-genome resequencing. A total of 2,126,759 genome-wide SNP markers were used to uncover marker-trait associations using single and multi-locus GWAS models. High broad-sense heritability for fruit quality traits was detected. Correlation analysis among traits revealed positive relationships, with the exception of fruit diameter and fruit shape index (ratio of fruit length to fruit diameter), which was negative. A total of 37 significant SNP markers associated with soluble solids content, flesh color, fruit length, fruit diameter, and fruit shape index traits were uncovered. These peak SNPs accounted for 2.1%-23.4% of the phenotypic variation explained showing the quantitative inheritance nature of the evaluated traits. Candidate genes relevant to fruit quality traits were uncovered on chromosomes Ca01, Ca03, Ca06, and Ca07. These significant molecular markers and candidate genes will be useful in marker-assisted breeding of fruit quality traits in watermelon.


Assuntos
Citrullus , Citrullus/genética , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Genoma de Planta , Frutas/genética , Melhoramento Vegetal
7.
Plant Dis ; 107(12): 3836-3842, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37386705

RESUMO

Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) race 2 is a serious disease in watermelon and can reduce yields by 80%. Genome-wide association studies (GWAS) are a valuable tool in dissecting the genetic basis of traits. Citrullus amarus accessions (n = 120) from the USDA germplasm collection were genotyped with whole-genome resequencing, resulting in 2,126,759 single nucleotide polymorphic (SNP) markers that were utilized for GWAS. Three models were used for GWAS with the R package GAPIT. Mixed linear model (MLM) analysis did not identify any significant marker associations. FarmCPU identified four quantitative trait nucleotides (QTN) on three different chromosomes (i.e., chromosomes 1, 5, and 9), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) identified one QTN on chromosome 10 as significantly associated with Fon race 2 resistance. FarmCPU identified four QTN that explained 60% of Fon race 2 resistance, and the single QTN from BLINK explained 27%. Relevant candidate genes were found within the linkage disequilibrium (LD) blocks of these significant SNPs, including genes encoding aquaporins, expansins, 2S albumins, and glutathione S-transferases which have been shown to be involved in imparting resistance to Fusarium spp. Genomic predictions (GP) for Fon race 2 resistance using all 2,126,759 SNPs resulted in a mean prediction accuracy of 0.08 with five-fold cross-validation employing genomic best linear unbiased prediction (gBLUP) or ridge-regression best linear unbiased prediction (rrBLUP). Mean prediction accuracy with gBLUP leave-one-out cross-validation was 0.48. Thus, along with identifying genomic regions associated with Fon race 2 resistance among the accessions, this study observed prediction accuracies that were strongly influenced by population size.


Assuntos
Citrullus , Fusarium , Estados Unidos , Estudo de Associação Genômica Ampla , Fusarium/genética , Citrullus/genética , Teorema de Bayes , United States Department of Agriculture , Doenças das Plantas/genética , Resistência à Doença/genética , Genômica
8.
Nucleic Acids Res ; 51(D1): D1457-D1464, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36271794

RESUMO

The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.


Assuntos
Cucurbitaceae , Genoma de Planta , Genômica , Sintenia , Cucurbitaceae/genética , Bases de Dados Factuais , Bases de Dados Genéticas
9.
Plant Dis ; 107(7): 2126-2132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36548923

RESUMO

Meloidogyne enterolobii is a virulent species of root-knot nematode that threatens watermelon (Citrullus lanatus) production in the southeastern United States. There are no known sources of root-knot nematode resistance in cultivated C. lanatus. Specific genotypes of a wild watermelon relative, C. amarus, are resistant against M. incognita but the genetics that underly this resistance are still unknown and it is not clear that this same resistance will be effective against M. enterolobii. To identify and characterize new sources of resistance to M. enterolobii, we screened 108 diverse C. amarus lines alongside a susceptible C. lanatus cultivar (Charleston Gray) for resistance against M. enterolobii. Different C. amarus genotypes ranged from resistant to susceptible for the three resistance phenotypes measured; mean percent root system galled ranged from 10 to 73%, mean egg mass counts ranged from 0.3 to 64.5, and mean eggs per gram of root ranged from 326 to 146,160. We used each of these three resistance phenotypes combined with whole-genome resequencing data to conduct a genome-wide association scan that identified significant associations between M. enterolobii resistance and 11 single-nucleotide polymorphisms (SNPs) within the C. amarus genome. Interestingly, SNPs associated with reduced galling and egg masses were located within a single quantitative trait locus (QTL) on chromosome Ca03, while reductions in nematode eggs per gram of root were associated with separate QTL on chromosomes Ca04 and Ca08. The results of this study suggest that multiple genes are involved with M. enterolobii resistance in C. amarus and the SNPs identified will assist with efforts to breed for M. enterolobii resistance in watermelon.


Assuntos
Citrullus , Resistência à Doença , Tylenchoidea , Animais , Estudo de Associação Genômica Ampla , Doenças das Plantas
10.
Nat Commun ; 13(1): 7897, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550124

RESUMO

The genomic sequences segregating in experimental populations are often highly divergent from the community reference and from one another. Such divergence is problematic under various short-read-based genotyping strategies. In addition, large structural differences are often invisible despite being strong candidates for causal variation. These issues are exacerbated in specialty crop breeding programs with fewer, lower-quality sequence resources. Here, we examine the benefits of complete genomic information, based on long-read assemblies, in a biparental mapping experiment segregating at numerous disease resistance loci in the non-model crop, melon (Cucumis melo). We find that a graph-based approach, which uses both parental genomes, results in 19% more variants callable across the population and raw allele calls with a 2 to 3-fold error-rate reduction, even relative to single reference approaches using a parent genome. We show that structural variation has played a substantial role in shaping two Fusarium wilt resistance loci with known causal genes. We also report on the genetics of powdery mildew resistance, where copy number variation and local recombination suppression are directly interpretable via parental genome alignments. Benefits observed, even in this low-resolution biparental experiment, will inevitably be amplified in more complex populations.


Assuntos
Cucumis melo , Cucurbitaceae , Genótipo , Cucurbitaceae/genética , Variações do Número de Cópias de DNA , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Cucumis melo/genética , Cucumis melo/microbiologia
11.
Front Genet ; 13: 1005158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204309

RESUMO

Since their introduction in Europe, pumpkins (Cucurbita maxima Duch.) have rapidly dispersed throughout the world. This is mainly because of their wide genetic diversity and Plasticity to thrive in a wide range of geographical regions across the world, their high nutritional value and suitability to integrate with local cuisines, and their long shelf life. Competition for growing the showy type or mammoth-sized pumpkins that produce the largest fruit of the entire plant kingdom has drawn attention. In this study, we used genome-wide single nucleotide polymorphisms to resolve admixture among different pumpkin groups. Also, to resolve population differentiation, genome-wide divergence and evolutionary forces underlying the evolution of mammoth-sized pumpkin. The admixture analysis indicates that the mammoth group (also called Display or Giant) evolved from the hubbard group with genome-wide introgressions from the buttercup group. We archived a set of private alleles underlying fruit development in mammoth group, and resolved haplotype level divergence involved in the evolutionary mechanisms. Our genome-wide association study identified three major allelic effects underlying various fruit-size genes in this study. For fruit weight, a missense variant in the homeobox-leucine zipper protein ATHB-20-like (S04_18528409) was significantly associated (false discovery rate = 0.000004) with fruit weight, while high allelic effect was consistent across the 3 years of the study. A cofactor (S08_217549) on chromosome 8 is strongly associated with fruit length, having superior allelic effect across the 3 years of this study. A missense variant (S10_4639871) on translocation protein SEC62 is a cofactor for fruit diameter. Several known molecular mechanisms are likely controlling giant fruit size, including endoreduplication, hormonal regulation, CLV-WUS signaling pathway, MADS-box family, and ubiquitin-proteasome pathway. This study provides a general framework for the evolutionary relationship among horticulture groups of C. maxima and elucidates the origins of rare variants contributing to the giant pumpkin fruit size.

12.
Plant Dis ; 106(7): 1952-1958, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34941369

RESUMO

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas C. amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 to 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding leucine-rich repeat receptor-like protein kinase and the WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


Assuntos
Citrullus , Resistência à Doença , Oomicetos , Peronospora , Doenças das Plantas , Mapeamento Cromossômico , Citrullus/genética , Citrullus/microbiologia , Resistência à Doença/genética , Estudos de Associação Genética , Oomicetos/patogenicidade , Peronospora/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
13.
PeerJ ; 9: e12343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722000

RESUMO

BACKGROUND: Watermelon seeds are a powerhouse of value-added traits such as proteins, free amino acids, vitamins, and essential minerals, offering a paleo-friendly dietary option. Despite the availability of substantial genetic variation, there is no sufficient information on the natural variation in seed-bound amino acids or proteins across the watermelon germplasm. This study aimed to analyze the natural variation in watermelon seed amino acids and total protein and explore underpinning genetic loci by genome-wide association study (GWAS). METHODS: The study evaluated the distribution of seed-bound free amino acids and total protein in 211 watermelon accessions of Citrullus spp, including 154 of Citrullus lanatus, 54 of Citrullus mucosospermus (egusi) and three of Citrullus amarus. We used the GWAS approach to associate seed phenotypes with 11,456 single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS). RESULTS: Our results demonstrate a significant natural variation in different free amino acids and total protein content across accessions and geographic regions. The accessions with high protein content and proportion of essential amino acids warrant its use for value-added benefits in the food and feed industries via biofortification. The GWAS analysis identified 188 SNPs coinciding with 167 candidate genes associated with watermelon seed-bound amino acids and total protein. Clustering of SNPs associated with individual amino acids found by principal component analysis was independent of the speciation or cultivar groups and was not selected during the domestication of sweet watermelon. The identified candidate genes were involved in metabolic pathways associated with amino acid metabolism, such as Argininosuccinate synthase, explaining 7% of the variation in arginine content, which validate their functional relevance and potential for marker-assisted analysis selection. This study provides a platform for exploring potential gene loci involved in seed-bound amino acids metabolism, useful in genetic analysis and development of watermelon varieties with superior seed nutritional values.

14.
Front Nutr ; 8: 729822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595201

RESUMO

Sweet dessert watermelon (Citrullus lanatus) is one of the most important vegetable crops consumed throughout the world. The chemical composition of watermelon provides both high nutritional value and various health benefits. The present manuscript introduces a catalog of 1,679 small molecules occurring in the watermelon and their cheminformatics analysis for diverse features. In this catalog, the phytochemicals are associated with the literature describing their presence in the watermelon plant, and when possible, concentration values in various plant parts (flesh, seeds, leaves, roots, rind). Also cataloged are the chemical classes, molecular weight and formula, chemical structure, and certain physical and chemical properties for each phytochemical. In our view, knowing precisely what is in what we eat, as this catalog does for watermelon, supports both the rationale for certain controlled feeding studies in the field of precision nutrition, and plant breeding efforts for the development of new varieties with enhanced concentrations of specific phytochemicals. Additionally, improved and comprehensive collections of natural products accessible to the public will be especially useful to researchers in nutrition, cheminformatics, bioinformatics, and drug development, among other disciplines.

15.
Plant J ; 106(3): 588-600, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788333

RESUMO

Polyploidy has played a crucial role in plant evolution, development and function. Synthetic autopolyploid represents an ideal system to investigate the effects of polyploidization on transcriptional regulation. In this study, we deciphered the impact of genome duplication at phenotypic and molecular levels in watermelon. Overall, 88% of the genes in tetraploid watermelon followed a >1:1 dosage effect, and accordingly, differentially expressed genes were largely upregulated. In addition, a great number of hypomethylated regions (1688) were identified in an isogenic tetraploid watermelon. These differentially methylated regions were localized in promoters and intergenic regions and near transcriptional start sites of the identified upregulated genes, which enhances the importance of methylation in gene regulation. These changes were reflected in sophisticated higher-order chromatin structures. The genome doubling caused switching of 108 A and 626 B compartments that harbored genes associated with growth, development and stress responses.


Assuntos
Cromatina/ultraestrutura , Citrullus/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cromossomos de Plantas/ultraestrutura , Citrullus/metabolismo , Epigenoma/genética , Estudos de Associação Genética , Genoma de Planta/genética , Poliploidia , Tetraploidia
17.
Front Plant Sci ; 11: 1097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793259

RESUMO

Elemental sulfur is an effective, inexpensive fungicide for many foliar pathogens, but severe phytotoxicity prohibits its use on many melon varieties. Sulfur phytotoxicity causes chlorosis and necrosis of leaf tissue, leading to plant death in the most sensitive lines, while other varieties have little to no damage. A high-density, genotyping-by-sequencing (GBS)-based genetic map of a recombinant inbred line (RIL) population segregating for sulfur tolerance was used for a quantitative trait loci (QTL) mapping study of sulfur phytotoxicity in melon. One major (qSulf-1) and two minor (qSulf-8 and qSulf-12) QTL were associated with sulfur tolerance in the population. The development of Kompetitive Allele-Specific PCR (KASP) markers developed across qSulf-1 decreased the QTL interval from 239 kb (cotyledons) and 157 kb (leaves) to 97 kb (both tissues). The markers were validated for linkage to sulfur tolerance in a set of melon cultivars. These KASP markers can be incorporated into melon breeding programs for introgression of sulfur tolerance into elite melon germplasm.

18.
Theor Appl Genet ; 133(2): 677-687, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31822938

RESUMO

KEY MESSAGE: A Citrullus amarus mapping population segregating for resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus was used to identify novel QTL, important for the improvement in watermelon disease resistance. Multiple disease screens of the USDA Citrullus spp. germplasm collection have highlighted the value of Citrullus amarus (citron melon or wild watermelon) as a resource for enhancing modern watermelon cultivars (Citrullus lanatus) with resistance to a broad range of fungal, bacterial and viral diseases of watermelon. We have generated a genetic population of C. amarus segregating for resistance to two important watermelon diseases: Fusarium wilt (caused by the fungus Fusarium oxysporum f. sp. niveum; Fon race 2) and Papaya ringspot virus-watermelon strain (PRSV-W). QTL mapping of Fon race 2 resistance identified seven significant QTLs, with the major QTL representing a novel genetic source of resistance and an opportunity for gene pyramiding. A single QTL was associated with resistance to PRSV-W, which adhered to expectations of a prior study indicating a single-gene recessive inheritance in watermelon. The resistance loci identified here provide valuable genetic resources for introgression into cultivated watermelon for the improvement in disease resistance.


Assuntos
Citrullus/genética , Resistência à Doença/genética , Fusarium/patogenicidade , Doenças das Plantas/genética , Potyvirus/patogenicidade , Mapeamento Cromossômico , Citrullus/metabolismo , Citrullus/fisiologia , Resistência à Doença/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Locos de Características Quantitativas
19.
Plant Mol Biol ; 102(1-2): 213-223, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31845303

RESUMO

KEY MESSAGE: Transcriptome landscape reveals the molecular mechanisms involved in the improvement of fruit traits by the grafting of watermelon and bottle gourd. Grafting has been used as a sustainable alternative for watermelon breeding to control soil-borne pathogens and to increase tolerance to various abiotic stresses. However, some reports have shown that grafting can negatively affect the quality of fruits. Despite several field studies on the effects of grafting on fruit quality, the regulation of this process at the molecular level has not been revealed. The aim of this study was to elucidate various molecular mechanisms involved in different tissues of heterografted watermelon and bottle gourd plants. Grafting with bottle gourd rootstock increased the size and rind thickness of watermelon fruits, whereas that with watermelon rootstock produced bottle gourd fruits with higher total soluble solid content and thinner rinds. Correspondingly, genes related to ripening, softening, cell wall strengthening, stress response and disease resistance were differentially expressed in watermelon fruits. Moreover, genes associated mainly with sugar metabolism were differentially expressed in bottle gourd fruits. RNA-seq revealed more than 400 mobile transcripts across the heterografted sets. More than half of these were validated from PlaMoM, a database for plant mobile macromolecules. In addition, some of these mobile transcripts contained a transfer RNA-like structure. Other RNA motifs were also enriched in these transcripts, most with a biological role based on GO analysis. This transcriptome study provided a comprehensive understanding of various molecular mechanisms underlying grafted tissues in watermelon.


Assuntos
Citrullus/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Transcriptoma , Transplante Heterólogo , Metabolismo dos Carboidratos , Citrullus/genética , Resistência à Doença/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Melhoramento Vegetal , Raízes de Plantas/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas , Análise de Sequência , Estresse Fisiológico
20.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671884

RESUMO

Watermelon is a good source of citrulline, a non-protein amino acid. Citrulline has several therapeutic and clinical implications as it produces nitric oxide via arginine. In plants, citrulline plays a pivotal role in nitrogen transport and osmoprotection. The purpose of this study was to identify single nucleotide polymorphism (SNP) markers associated with citrulline metabolism using a genome-wide association study (GWAS) and understand the role of citrulline in watermelon domestication. A watermelon collection consisting of 187 wild, landraces, and cultivated accessions was used to estimate citrulline content. An association analysis involved a total of 12,125 SNPs with a minor allele frequency (MAF) >0.05 in understanding the population structure and phylogeny in light of citrulline accumulation. Wild egusi types and landraces contained low to medium citrulline content, whereas cultivars had higher content, which suggests that obtaining higher content of citrulline is a domesticated trait. GWAS analysis identified candidate genes (ferrochelatase and acetolactate synthase) showing a significant association of SNPs with citrulline content. Haplotype networking indicated positive selection from wild to domesticated watermelon. To our knowledge, this is the first study showing genetic regulation of citrulline variation in plants by using a GWAS strategy. These results provide new insights into the citrulline metabolism in plants and the possibility of incorporating high citrulline as a trait in watermelon breeding programs.


Assuntos
Citrulina/genética , Citrulina/metabolismo , Citrullus/genética , Citrullus/metabolismo , Domesticação , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Arginina , Ferroquelatase/genética , Ferroquelatase/metabolismo , Frequência do Gene , Ontologia Genética , Genes de Plantas/genética , Genoma de Planta , Óxido Nítrico , Osmorregulação , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...